Drawing Causal Inferences in Applied Lighting Research: Threats to Validity

Jennifer A. Veitch, Ph.D.
Director, CIE Division 3 – Interior Environment & Lighting Design
Principal Research Officer, National Research Council of Canada
Definitions

• *Scientific research* is a systematic, controlled, empirical, and critical investigation of hypothetical propositions about the presumed relations among natural phenomena. *What happens to Y when X changes?*

• *Hypothesis:* a tentative proposition about the relation between two or more phenomena or variables. *X causes Y.*

• Inductive inference:
 – Causes covary with effects
 – Causes precede effects
 – Spurious causes can be eliminated

(Above credit to F. N. Kerlinger)
• **Construct**: a concept which is invented or adopted for a special scientific purpose, e.g., “brightness.”

• **Operational definition**: assigns meaning to a construct or a variable by specifying the operations necessary to measure it.

 (Above credit to F. N. Kerlinger)

• **Examples?**
Research Designs

• True experiments
 – Laboratory experiments
 • Maximal experimenter control over:
 – manipulated independent variables
 – elimination of unwanted variability
 – participant characteristics
 • Limited contextual richness
 – Field experiments

• Correlational investigations:
 – Observations
 – Surveys
Laboratory Experiments

• Two common research designs
 – Within-subjects - everyone experiences all experimental conditions
 – Between- subjects - participants randomly assigned to one experimental condition

Demonstration: The Law of Large Numbers
Research Design Decisions

• How will my investigation eliminate alternative explanations?
 • internal validity [Fotios too]
 • construct validity [Fotios too]
 • statistical conclusion validity [Uttley]

• To what people, settings, or times do I want to apply the results, and how far may I take this?
 • external validity
Internal Validity

- Test falsifiable hypotheses
 - Comparison group!
- Eliminate alternative hypotheses
- Eliminate sources of bias, including...
 - Participant expectations
 - Experimenter expectations
 - Participant selection (non-random group assignment)
 - Differential attrition
 - Testing (learning, fatigue, familiarity...)

Construct Validity of Causes

• Confounding
 – When more than one variable changes at a time

• Inadequate specification of conditions
 – See Day 1 presentations!

• Arbitrary choice of conditions
 – Refer back to the theory you want to test
 – Include levels that provide a meaningful comparison
 – Consider including extremes for which you have knowledge
Construct Validity of Outcomes

• Specify measurement operations
 – If a validated measurement of Y exists, use it!

• Multiple measures – avoid mono-method bias

• Assess validity & reliability of measurement tools
External Validity

• Generalizability

• Random selection from population

• Sample representativeness, preferably not just:
 – WEIRD: White, Educated, Industrialized, Rich, and Democratic. 99% of all published studies rely on participants recruited from populations that fit those criteria.

• Setting representativeness
Conclusions and Discussion

• Research design is a creative – and balancing – act
• There are few right and wrong answers – mostly trade-offs

• Discussion and thoughts...
Classic Resources

Contact

Jennifer A. Veitch, Ph.D.
Principal Research Officer, Construction
National Research Council of Canada
1200 Montreal Rd
Ottawa ON K1A 0R6

Jennifer.veitch@nrc-cnrc.gc.ca | j_a_veitch@jdarchitect.ca